Print Print  
Award Information
Proposal Number: FY07.1-0711133-II
Proposal Title: Improved Solid-State Neutron Detector
Topic Number: H-SB07.1-009
Phase: Phase II
Topic Title: Improved Solid-State Neutron Detection Devices
Organization: Radiation Monitoring Devices, Inc.
Address: 44 Hunt Street
Watertown, MA 02472-4699  
Abstract: The use and applications of radiological sources, for power, medical, and defense applications, continuously increases with time. Illicit nuclear materials represent a threat for the safety of the American citizens and the detection and interdiction of a nuclear weapon is a national problem that has not been yet solved. This represents an enormous challenge to current detection methods and monitoring technologies that require improvement to demonstrate accurate radiation identification capabilities. Using neutron signatures represents a promising solution, however, such a detection technique requires capabilities of detecting neutrons, both thermal and energetic neutrons, while rejecting effectively background gamma rays. Rugged and low-power neutron detectors are highly desirable for large-scale deployment. This research develops a neutron detector that has the potential of replacing pressurized 3Hetubes and current solid-state detectors with an ultra-compact detector based on CMOS-SSPM (Solid State Photomultipliers) technology. This technology provides a low-power, portable unit that can be mass-produced and deployed in a wireless network on a large scale. The detector is very fast and, in addition, can provide time and spectroscopy information over a wide energy range, including fast neutrons and is, therefore, capable of identifying threatening incidents in real time. 2. Anticipated benefits/Potential Commercialization The proposed design for neutron detection has a strong potential to replace He-3 tubes, and can also replace current neutron solid-state detectors, which are either sensitive to gamma-rays or cannot have high-scale production to form a deployable technology for a detection network. In addition the proposed technology is fast, can provide energy and time information, and can be easily adapted into compact packages with or without remote readout electronics. The direct application of this project is to contribute to the national effort of protecting the United States against terrorism through DNDO related missions. However, this research as a whole and with its diverse components will have a big impact on many other research fields that are directed toward general public benefit. The proposed technology with its timing resolution of sub-ns and sub-um high-spatial resolution has immediate application in thermal neutron radiography used to probe macromolecular structures in protein crystallography and in investigations of new materials. The double-pulse signature of thermal neutrons interacting with boron-loaded plastic readout by PMT's is being used for which is the NASA discovery mission that will explore two complementary protoplanets, Ceres and Vesta, to provide new information on processes by which the planets formed. Replacing the PMT by CMOS-SSPM for this mission will definitely enhance this research since SSPM detectors are ultra-compact devices, rugged and operate at low voltages, which is very desirable for space missions. Speaking of space, investigation of highenergy neutrons in space necessarily requires a new type of detection material since fast neutron detectors are traditionally made of liquid compounds that are considered hazardous cargo for space flights. The proposed technology can be scaled to few more layers of detector segments to detect fast neutrons. This technique can be also used for neutron detection in nuclear waste management and especially in investigating the amount of fissile materials when enclosed in waste containers. Neutron/gamma discrimination, which is also important for such applications will be tested through two different methods in the Phase I effort. These techniques of thermal neutron capture, and photon detection will have direct implication on neutron capture therapy of cancer. Due to the high-spatial resolution, energy information, the large signal to background ratio and the low cost of CMOS SSPM devices, this technology represents a strong candidate for neutron and even medical imaging such as PET, small animal SPECT imagers, x-ray imaging and biomedical applications that are directed toward the diagnosis and treatment of Cancer, the Alzheimer disease and disease progression studies. Last and not least, high-energy proton accelerator facilities have been constructed for application in various fields of study, such as nuclear physics, material science and radiotherapy. In these facilities, it is very important to monitor doses from neutrons which can penetrate radiation shields and contribute dominantly to the doses of workers and members of the Conventional moderator-based survey instruments, rem-counters, are, however, less sensitive to such high-energy neutron. The proposed effort will boost these studies since the techniques of collecting the scintillation photons and reading them out with CMOS integrated readout circuitry can be applied there as well.
Award/Contract Number: HSHQDC-08-C-00169
Period of Performance: 09/30/2008 - 09/29/2009
Award/Contract Value: $463,736.00
Award/Obligated Amount: $463,736.00